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ABSTRACT' j
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The machine perception laboratdgy rey a new [
research in Artificial Inielligence at the p Science Department of
UCLA. It is based on synergistic intermixing of mecthods and knowledge
from the fields of Anificial Intciligence and N ience.

-0- The Newroscience is a source of fundamental concepts about function
and meckanism of natural vision and perception; it motivates our view of in-
separability between algorithms and neural substrate.

-0- The Al explores compwsatioral theories of vision and percepiual reason-
ing by inventing algorithms and implementing them as “connectionist” archi-
teciures.

The underlying intent of this interdisciplinary approoch is w0 transform
scientific knowledge into an enginecring form of a gencral purpose machine
perception by viewing “neural” connccuons as a paradigm for parallel com-
putations,

The future of inwclligent robots depends on succesfull implementa-
tion of a robust percepwal system.  Although many clever forns of robotic
vision have been engineered, a gencral-purpose machine percephion remains
a distant goal. Computing “architectures best suited for global perceptual
function pose onc type of a probiem, Another problem stems from the limi-
tations of scquential computing paradigm where the number of functions
which naturally map onto Von Neumann architecture is restncted. In natural
system, visual functions are supporiced by a varicty of paraliel structures. This
motivates our belict that future advances in a gencral purpose perception
must assume inseparability of funcrion from strucutre.

QOur prototypical computational architecture consists of hierarchical-
ly structured layers of processing units that peeform dedicated functions.
Both discrete and real-value passing architectures are considered. Physical
repeesentation of transduced stimuli 1s implemented as a well structured con-
nectivity between "neurons” and the computations are performed by types
and weights of different conncctions. More precisely the computation is a
result of some process, realized as “ncuronal” functions, that is applicd to-a
spatio-lemporal “image” of signals. The process and the constraints are em-
bedded inwo our connectiomst architecture. The translation to more abstract
levels is done through aggregation of features by an interpreter, which in ear-
ly vision may be implemented oy fixed connections. The uitimate goal of this
project is to conceptualize a computing structure which could evenwally e
implemented in hardware.
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1. COMPUTERS AND BRAINS - MOTIVATION

This paper is divided into four sections. First we outiine the intel-
lectual needs for integrating the knowledge about percepion in man and
machine. The second section presents our notion of large grain architecture
as a computational envt nt for ing global funcuons of mactune
perception. In the third part we describe the small grain architectures
represented by “neural networks® that providie a computational substrate for
perceptual functions. We conclude with architectural models of two carly-
vision operations implemented as neural networks that embody the principle
of inseparability between structure and function.
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a. Intellectual motivation

Intellectual motivations that unify studies of human and machine
m‘nﬁ; - including vision, touch, proprioception, range and other sensory
ities, - derive from assumption that information processing is funda-
mental for intelligent behavior. Perception, spetial reasoning and learning are
the auributes that will differentiste mummim::goufmnm
day automated manufacturing. The ultimate test for Artificial Intelligence is
the invention of an sutonomous mobile robots, whose “inelligent” behavior
emerges from linking perception 0 motor output. Modem computer science
plays a pivotal role in understanding information processing systems. On the
other hand. mechanisms and functions of information processing underl &
human intelligence are in the domain of Neurosciences. The rapid growth
these disciplines in recent years is advancing our undersanding of
tion. ‘It is hoped that interdisciplinary combination of Aruficial Intelligence
tahn‘i; Cog'nit;ve Science will provide more rigorous, scientific fundations for
research.

What can be expected from a gencral theory of perception
h it shouid

developed by such crossdisciplinary ? In the shart term

help us understand how the elements of perception have evolved in natural

stems and what are their limits. In the long run, 8 theory of percepion

X«Mvnlpunfmnmuqmmml d beyond p tly limited

engineering knowledge of this fi . For ple, can we impr upon
ical perception when implementing these functions in mobile obots?

Is human jon limited by characeristics inherent only 10 trological

systems? Are these limits imposed by algortithmic principles or by the under-
lying substraic? What 1s the grain of computing architecture most suitable foc
cognition and perception?

b. Perception and Al

. Our working goal for Machine Perception and in particular for
Computer Vision is a development of computing systems that can accom-
plish tasks previously only achieved with human intelligence (1). Discovery
of heusistics used o constrain the prodlem according to physical laws should
eventually lead to models of greater generality (2). In the past these efforts
were strongly limited by the computational architectures available to the
designer. The sequential computing paradigm limits solutions for computer
vision that can operate in real time by restncting a selection of functions that
naturally map onto Von Neuman architecture. In natural systems, visual
functions are supported by a gamut of physical stn that are inh: ly
masively paraliel (3). Hence, we believe that further progress .n realization
of general purpose computer vision that operates in real ume must be based
on assumplion that function and the underlying computational substrate are
inseparable. The chances of success can be maximized by combining wadi-
tional, forward-enginecring approach 10 synthesis of computer vision system
with analytic viewpoint as characterized by Neurosciences where the intent
is 10 reverse engineer the solution. This is difficult because the curremt
knowledge abcut anatomy and physiology of neuroral networks underlying
manipulstion of mental imagery does not allow easy introspection on such
processes at the lsvel of subcognitive computation (4, 5). Nevertheless,
models of menwl computation underlying perception and cognition must be
build and venfied. Approximation of such tests at the present ume, is possi-
bile only through computationai modets in the realm of Al (6). Our approach
1o studies of cognitive and percepuual functions is dewiled in next section and
it involves coarse grain architecture :}nmwd by networked Al worksta-
tions. On the other hand. the notion of local computation xied by fine
grain architectures resembling neural networks is devel in the third
[

Perception may be thought of as an example of a continuous prob-
lem solving operation. It is an active process m&;’:‘; hypotheses are
formed about the sustounding cavironment (see 7). information ac-
quired through vision, ouch, smell, sound and proprioception ts integrated to
evaluate these hypotheses (8). in each of the sensory modality analog dats
must be first acquired and preprocessed. This stage 18 simular 0 data driven
signal processing operations that are well understood in the realm of Electni-
cal Engincenng. The next stage involves segmentation and labeling of the
preprocessed sensory data (2,1). And the last stage involves understanding of
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the sensory information in every modality and integration for perceptuad rea-
soning. This representational view of processing denves from generally ac-
[ model of visual perception. Considering recent advances i compuker
Mdmmwcmmmm(mwnwnmymdpa:rmA
critical question is whiceechanisms must be incorporated into ware 10
guararuee human-like perf . Which architectures would make basic
perceptual capabilities including leaming and problem solving, feasible for
autonomous mobile robots? The na computation is based on different
principles than those embuodied in computers. [t is a task onented process
where the current situation, including goals and drives, directly determine the
next action (9). The human brain has many highly developed structures,
dedicated o performing different functions, even gh externally it sppears
10 act as general:, system. Unravelling mysienies of percepnion and
cognition 1 one of this century’s major scienutic challenges.

¢. Newronal architectures and parallel computation

The inspiration that Al denves from Neuroscience is based on as-
sumption that ipulauon of symbolic rer tavons s fundamental o
emergence of intelligence (2, 10). Hence, computers as symbol manipulaung
systems could allow -us to create and test models of perception as computa-
tional activities of the brain. Since we are the keepers of informauon about
this world we can construct the prog! and data str that internally
10 computer represent any concept that aormally refers 0 extemal envuon-
ment. The umulation runming 0a a conputes Can be likened 10 cog-
nitive processes that allow 10 reason about the consequences of physical ac-
tions before they take place. The central quesuon is whether we could create
an aruficial symbolic system that uses sensory mnformauon o constnxt
abstract representauons of extemal world. If Al techniques will allow us to
realize such symbolic behavior in a computer-based sysiem wil it have 1o be
based on neural pnnciples (9)? And if so how can we impicment symbolic
processing in terms of neural networks?

The deswreability of ncuronal architectures denves from massive
parailelism thence, real-ume performance) and computauon based on con-
necuvity thence. simplicity) (11, 12, 13). Parallel comnputation has recently
become 1 major concern for computer science. The constraints of sold state
physics limst further evolution of sequential machines to increasing speed via
optical compuung. And the developments in VLSI favor parallel architec-
tures. To gain speed, one school within parallel compuung paradigm as-
sumes that computaton can be performed by a pauern of connections
between slow and simple processors (11, 12, 13).

Fine grain massively parallel architectures are similar lo neuronal
structures in the sense that they are based on mullions of inleractng proces-
sors. One of owr immediate research problems is 10 invesuigate how can we
realize such strucutres and how 0 compute with them. Because of close
resemblance to anatomy of natural computing structures, this class of archi-
tectures might offer the most plausible solution to machine perception 1n real
ume (12, 14,9, 15).

Past approaches 10 compuier vision were based on the assumpuon
that 1 can be solved in the abstract Jomain unrelated 1 the underlying phys:-
cal mechamsm (1, 16). Our approach differs because we constrain the prob-
lem by requiring a solution 10 be impl ble in a 3-D c« archi-
tecture. The fundamental premise of connecnonism is that individual neurons
do not acuvely manipulate, large amounts of symbolic information (12).
One of the major modes of information processing 10 the neural systems can
be descnbed n terms of the relauve strengths of synapuc connections.
Therefore, rather than using complex units that manipulate symbolic inputs.
connectiontst architectures computes by modulating signal with appropnate-
ly connected simple unis. Hence, the compuiation is a form of
cooperative/competiive relaxaton process, taking place 1n a distnbuted net
of "neural” clements.

Our approach is different from mululayer perceptrons because we
propose that each unit has an S-shaped transfer charactenstic (44), which can
be modeled by: V = Vmax { X / ( X+k)], where V is the output, Vmax is the
saturaung level of the cutput signal, X is an input and the k 13 the nput value
that generates the half maximal response. This 1s censistent with physiologi-
cal evidence for saturaung membrane response and distnbuted synapuc -
puts. inputs. The sigmotdal funcuon allows for automaty: sensiuvity control,
computation of relative values in context of the neighborhood and others.
Thus unl:ke the “binary” thresholding function in perceptrons, our networks
will always operate in the most opumal configurauon (17).

The “neuronal” operators can have thousands of inputs and tens of
outputs. A conunuous output value can be generated as a thresholded hy-
perbolic tangent function of weighted nputs. Weights aliow us to implement
both posiuve and negative averages. Presynapuc inhihition, dendro-dendntc
synapses and the concept of relauve changes carrying informaton completes
the architectural envirc These el allow the 1mpt n of
convergence and divergence of signal pathways as well as lateral interacuons
between spataily disunct nodes. Simulauon of specific compuung architec-
tures 1s supporied by UCLA-PUNNS, a neural network simulator developed
1n my laboratory 10 address the quesuon of inseparability of funcuon and
compuung substrate (1R},

Principies of computation behind our simulated model are inspired
by the neurophystology of interactng neurons (19):

eeg--- Concurrent computauon is supported by parallel acnve connections
between neuronal-operaiors. arranged in a huerarchy of lavers.
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<0< Computation is performed in the analog domain and can be simulated
as real-value passing nerworks. i

=<0 For early processing stages all inira and inter layer connections are
Axed and control is executed by feedback pathways whick selectively moda-
late activity in a single operaiors. >

cesQnen A:an’w properties of the networks derive from relazation-like
behaviour, computed by each layer at the multiple scales of resolution.
<ev0~--The cooperative and competitive modes of relaxation are compused by
agonistic and antagonistic lateral interactions between newronal operators.
ceepe-- Conmections are modeled by weights resembling synapses witk sig-
moidal input-outpsud characteristic.

wer-i+ Abstractions as higher levels are defined by the specific architecture of
CORRECLONRS. .

~ee0--+ Segmentation is partially determined via bottom-up linking of many
simulianeous computed images of primitive aitributes. )

Our principal architectural module is a theee- layer computing struc-
ture (18). The camries a ' correct repeesentation of
layer is an sbstraction which does not have © be
spatially indexed 10 the original image. Local constraints are buill into the
%y:savc-‘#low:‘uwc mgxmw;uﬂm .uowm‘hpy:'

e of our concept is that it is o imple-
mentation of paraliel architecture for s_mnj ) i

of feature maps in. the symbolic domain.

d. Newral net representation of perceptual knowledge.

In Computer Vision systems, programs performing visual functions
are constrained by the architecture. The robustness of the human perceptual
system siems from its ability 10 adaptprogram iself. Thus novel stimuil can
be processed by newly developed computing stn Plasticity itself does
not explain perception, but ability w program new knowledge and ©
search for altemative hypotheses is fundamental 10 perceptual tasks. A prion
knowledge of selecuon criterion will always allow 10 exhaustively search
and find an optimal model that satisfies the postulaied hypothesis. ques-
tion is however, can such solution and its alternatives be identified in a rea-
sonable time. Hence, the need for massively paraliel computation «» a form

- of neural nets.

We know that knowledge allows (o optimize the search process (1).
This poses a quesuon of how !0 organize and represent knowledge io a2
memory so that it can be easily accessed at the right time (20). The facwal
hmlzd}ge 23 opposed 10 "how-w0" knowledge, can be organized into nes-
works of associations, so that access 10 one pan provides coraections to oth-
er relevant parts. The knowledge about the scene must include the specifics
of visually perceived objects plus the knowledge about a variety of objects in
all rel scenes or funcuions. This suggests huerarchical, as well as associa-
uonal, structure. How 10 realise such architectare with connectionist struc-
ture, how 0 map the relevant knowledge onto pstterns of connections and
how (0 make it program itself by changing connectivity without “forgening®
are some of the quesuons that we are facing.

Perceptual knowledge must incorporate world information derived
from integration of different sensory modalities. "Nihil est in intellectu quod
non sit prius in sensy” (SL Thomas of Aquinas 13c), there is nothing in our
intellect that did not pass through our senses. Most of our knowiedge about
the environment comes (o us through one of the five senses. Hence, under-
standing the workings of these systems is a prime scientific lem. This
problem is magnified in the technological realm. Vision is indispensible for
autonomous mobile robots, and there is some progress in this arca. Other
sensory modalities are more neglected, because o is not clear how to best use
them and how w implement practical solutions. in general, a solution to sen-
socy interactions with the environment is a precursor to adaptabie, intelli
ﬁ:mnance in for example, industrial setungs or in space exploration (21).

problem of best architectures or environment for studying questions re-
lated to sensory wntegraton is open. The key questions that must be ad-
dressed are transmodal equivalences, sensory-mode specific knowledge and
constraints, merging of representauons specific 10 modality, and disamin-
guaung conflicung modal specific informaton. These problems represent an
important scientfic challenge (o implementation of machine percepuon.

1. MACHINE PERCEPTION LABORATORY

The coarse grain architecture of the machine perception environ-
ment coasists of four networked Al workstations, each performing dedicated
function (fig.1). The vision station simulates the acuon of the "EYE" and
some higher level visual functions. The "HAND" s a separate station that
provides the environment for studying manipulaton and locomotion in sup-
port of perceptual task. The Ethernet fulfills the role of the spinal cord by al-
lowing (o integrate other scnsoré modalities, such as range, proximity, touch,
etc., controlled by the "SENSE" workstation. The fourth Al workstations
simulates higher level cognitve funcuons of the "BRAIN". The ulumaie
goal of this evolving architecture is to build an environment where by expen-
menung with global functions of machine vision and perception we could
reduce scientific concepts o engineering solutions.



from the eavironment. Moreover, this information must be ized im0 8
store of knowledge that can be applied © future problems. LISP-based en-
vironments offer many advantages for experimenting with issues relaied 1o
highly adsptive, multisensory based robotic
viconments will

packages include, among others, systems in vision, planning, decision-
making, data fusion, reasoning, problem solving eic. The MPL:" ncluding ail
hardware/software sysiems, is in a continuous state of evolution and offers a
diversified experimental environment spanning fields of computer science,
anificial imelligence, robotics and cognitive sciences.

a. Sysiem organization

The can be scen as a hierarchical ization of separaie
running on different workstations (22). Each dedicated station is a
complese LISP-based environment extended with functions and procedures
appropriate for experimenting in its domain. Part of the integration issue is
addressed by extending the towal eavironment with functions that accept. in-
terpret and execute commands emanating from a dedicaied station called
"BRAIN" and send back resuits of their domain-specific computations. In
this sense the dedicated station behaves as a lower-level entity, capable of
understanding high-level cominands and executing them by uiggenng spe-
cialized procedures appropriate to the task.

Such sutions perform multitasking operations. in- thew domains
while at the same time runnm#ounder the multtasking environment of the
"BRAIN". This wili ease the TOP-DOWN inicgration of the system since
programming will be limited to writing specialized functions for the bran.
Message-passing programming, inherent in an advanced Al environment will
ease inter-lask communication and the integration of new workstations. At
the same time, the implementation of the system as a network of independent
station will their integrity, support paralle! execution (vision and
touch), and perhaps allow for easy integration of software wnen in other
languages.

MACHINE PERCEPTION LABORATORY
University of Catifornia, Los Angetes
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Figure 1. Global computing cnvironment for the * achine Perception Labora-
tory
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are loosely
tems or pattems of data and performance in real-time. It is intended
howem.uhmjac:ﬂondmpuuﬁmm:u ific domain,
for exampie vision, will be performed on dedicated station "EYE".
b. Insegration

Qaqdﬂukqwoﬂqthmﬁngwmw lnues:{
synchronization, programmability, communication, balancing, paral
mmnmmmpoammmummwmww
areas of computer science, We envision that MPL will consist of a few,
networked Al-based workstations and dedicated computers. Because of this,
a unified LISP environment will aleviaste many probiems inherert in integra-
tion of such complex systems. One of the key issues of integration will be to
combine symbolic numeric wnpuuuouinexnsem?modﬂhy.m
9( )le successful solution 10 this problem in the ares of vision is given
in (23).

. Our initial research in the perceptual funclions is focused o in-
tegration of vision with other sensory modalities. Hence, the notion of multi-
ple networked Al-workstations, each dedicated 10 sepanate perceptual func-
tion. The LISP cnvironment provides tools for easy integration of separaie
processes operating on different work stations in the network. Additionally,
;(mnllows for easier incoropration of ‘software modules written in other

guages.

_ The "BRAIN" plays the role of organizing problems at the task lev-
el and it assumes the responsibility of distributing computing to sta-
tions. Using a LISP enviroamex o implement "BRAIN {cilitates and
enhances its performance. It is relatively easy o creawe facitlities for pro-
grammung functions that can request services of remoke procedures, gather
high-levei information from different sensory modalities, snd interrupt or ac-
livate processes such as manipulation running on the other stations.

) Such an environment lends itself 0 incremental cevelopment and
lesting of complex perceptual behavior, Separalely developed and tested sen-
sory or manspulation operations can be integraicd as primitive functions in
the "BRAIN'S" repertiore. Task-level programming, world modeling, and
manipulation of symbolically represented infromation is fundamental to im-
plementanon of cognitive functions (24).

* [L UCLA PUNNS: NEURAL NET SIMUMTOR

Previous wection presenied an example of a coarse grain architec-
ture, most suitable for studying global functions of percepuion. in this part we
focus on eavironment for studying neural networks as physical substrate
underlying local computation i perception. Physical interactions with our
world demand real-time responses. If a machine is (o maneuver and operate
in an underconstramned. natural environment, its efficacy and survivability
will also depend on how quickly it can perceive and respond (25) Natural
systems solved the problem of real-ume constrainis by using massively paral-
led neural networks. The capabilities of autonomous, mobile robot are res-
incted by the size, welsm and power requ of the comp (26).
The amount of support a computer extracts from the machine is one of
the cnitical factors \n deermuning the feasibility and (unctional capabilities of
a sysiem. The progress in this area ma{‘comc from conceptually new anchi-
wcmrqlbmd on neuronal pnnciples. Hence, the need for powerful simula-
ton tools.

o raten o pemsepual henometa. Frof b problem siems
satisfactory ex tion of perce na. em stems
from mmlity 0 descnibe the process. Von Neumann speculated that the
structure and the state of the neural network might be the amplest way to
descnibe perception (27). Our approach 0 machine percepuon is based on
assumption th-t the network structure yields the function and. vice versa, that
the real-ume funcuon of perception mplies a parucular neural network struc-
ture. This approach is motivated by the reductionist view of neurophysiolo-
gy where the pnncipal notion 13 1o explain function in terms of structure (19).

To nvestigate the relationship between structure and fupcmn. we
have developed PUNNS (Perception Using Neural Network Simulaton).
PUNNS (59) 15 2 continuously evolving environment that allows 1o study the
funcuonality of massively parallel computauonal structures as applied to im-
age data. The imual focus is 10 study neural structures that allow execution
of visual functions in constant ime, regardless of the size and complexity of
the image. Because of complexity and cost of building a neural net machine,
a flexibie neural net simulator is needed 1o invent, study and understand the
behavior of complex vision algonthms. Some of the issues involved in build-
ing a ssmulator are how 10 compacily descnibe the interconnecuvity of the
neural network, how 10 input image data, how 10 program the ncural net-
work, and how to display the results of the network.

a. Neural samulaiors

The theoretical properties of pscudo neural networks as applied o
logical compuation, learning and adaptation have been exiensively explored
and reviewed eisewhere (27,28, 29, 30, 31). Many of these aches have
nothing in common with neurophysiology. Nevertheless, they do indicate the
diversity of behavior that results from e interconnecuon of suumple compu-
auonal clements. PABLO is an example of a ssmulator that provides precise
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Figure 2. Block diagram of PUNNS run-time environment.

modeling of neurons and their interactions (32). Its environment closely sup-
ports many known properties of soma membrane, synaptic physiology, den-
dritic propagation, and axonal transmission. BOSS is another discrete-event
simulator that was designed 10 investigate large neural networks (33). In
contrast to PABLO, where each individual neuron was specified and inter-
connected, BOSS forms a statstical representation of the connectivity pat-
tern. This allows for the relatively fast simulation of large connectivity pat-
terns,

In contrast (o these batch type simulators, ISCON offers the advan-
tages of an interpreted simulator and network construction ol (34), It is
wnitten in LISP and it allows 1o dynamically change nctwork connectivity
and restart the simufation. The penalty for this flexibility is that large net-
works take prohibitively long to execute. To increase execution speed while
maintaining flexibility, ISCON evolved into the Rochester Connectionist
Simutator (35). RCS 1s a run-ime environment written in C that allows user
written programs (0 access a library of connectionist type functions, c.g.
building networks, seiting potentials, cxamining nodes.

b. PUNNS environment

The run-time environment of PUNNS is fast and robust (fig. 2).
PUNNS was implemented in C under System V and has been been ported 10
4.3bsd. The underlying simulauon approach used was a discrete time simu-
lauon wechnique that has each node visited at cach simulation ume siep. This
approach is especially useful when input daia is changing every few ume
steps. A connectivity language (cXel) was developed that describes the
funcuonality of individual nodes and how they are interconnected. Complex
connectivity pattemns using large numbers of nodes can be generated by
eXel. pre-processor. routines. These are programs that output eXel. files.
Hence, they are easy to modify. when the connectivity pattem must be adjust-
ed After loading the eXcL file o PUNNS, the parser builds a data-
structure which can be quickly interpreted to produce the simulaton of the
neural network. Changing node functions or connectivity 1s accomplished by
reloading a modified eXeL file. Input and output to the simulation is done
through graphics windows. Real images are used as & test data for the syn-
thesized networks. A node’s funcuon can access a particular range of pixels
from a graphucs window and can display the result of a node, after firing, in
an output window. Stimulus and response of a-net can be displayed by using
multiple windows. Activity levels in a layer can be viewed in one window,
and the window can be saved as an image. This snapshot of activity can be
then placed in an input window and newly loaded layers can conunue pro-
cessing from it

In PUNNS, lucal connections and global mappings are used w
separate the ideas of neighborhood node interactions and the connections es-
tablished between funcuonally different blocks of nodes. Local connections
are responsible for recepuve field size and property, while global mappings
may or may not be topologically preserving. A node’s funcuon tells what a
node computes from its snputs and its temporal properues descnbe how the
excitaton level changes over ume. The node is the lowest level pnmidve
that represents an 1dealized, lumped parameter model of a neuron. Node
description specifies inputs from other nodes input and the funcuons which
are 10 act on these inputs. PUNNS also allows for dendriuc input to a node.
with each dendnie having a possibly umque processing funcuon. All nodes
are specified in eXel files as follows (italics indicate a user definable param-
eter):

node node-name:
initial-value, length-of-lustory;,
node-function,
dendrite- | :dendnite-functionl, node-ramels, ... .
dendrite-2.dendrite-function2, node-name 38, ... .
soma, node-namelJ, ... , node-name42.

The inutial-<alue of the node allows a selection of different intal value. The
hestory-length of a node indicates how many past excitation levels should be
saved which 1s useful in modeling exponenual decay. The node-funcnon s
implemented tn C, 1t exists in the PUNNSrun-ume environment and 1s fired
when executed by the simulator. The dendrite-function performs the same
purpose as the node-function, There 1s no provision for modehing a delay i
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dendritic propagation outside of synaptic transmission. The dynamic

behavior of neural networks can be modulased with a :iime-delay option that

is synonytmous with-multiple synaptic delays.

PUNNS has been used (0 model and simulate pre-attentive "exture
segmentation (36) and the ion of matching heunistics from time-
varying images (18). Figure 3 illustrates how a conceptual structure, in this
case a center-surround receptive tickd, is analyzed using PUNNS. The stnc-
ture of this receptive field, forms a strongly excitatory center and a concen-
tric inhibitory surround. When multiple, ing center-surround recep-
tive ficlds are applied 10 an image (fig. 3a.), the result is s pattern of activity
that highlights discontinuities in umage intensities (fig. 3b). As the transition

X axis

—_—

y axis

(b)

3
Level of EZxcitatisn

Figure 3. Example of the input image applicd to the PUNNS simulating a
layer of nodes with center-surround angomstic recepuve ficlds (a). The ac-
tivitics of these nodes in response to such simulus are shown in (b)

.

0



in intensity becomes stronger, the node's excitation level increases. This
structure was casily IKcmmyped in the PUNNS environment and the simula-
tion time was under thirty seconds.

IV. APPLICATIONS: VISION THROUGH CONNECTIONS

. In this section we present examples of two early vision functions
which have been implemented and analyzed using principles of neural net-

1. Constancy preprocessor

The success of autonomous mobile robots depx on the ability o
understand continuously changing scenery. Present techniques for analysis of
images are not always suitable because in sequential paradigm. computation
of visua! functions based on absolute values of stimuli is inefficient. Impor-
tant aspects of visual information are encoded in discontinuities of intensity,
hence a representation in terms of relative values seems advantageous (2.3).
This.e:ﬂle deals with the computing architecture of a massively parallel
vision ule that optimizes-the detoction of relative intensity changes in
space and time. i

Visual information must remain constant despite the variation in the
ambient light level or in the velocity of a target or a robot. Constancy can be
achieved by nommalizing motion and lightness scales. In both cases, basic
computation involves a comparison of the center pixels with the context of
surrounding values. Therefore, a similar computing architecture, composed
of three functionally-different and hierarchically-arranged layers of overlap-
ping operators, can be ‘used for two integrated pans of the module. The first
part maintains high sensitivity to spatial changes by reducing noise and nor-
malizing the lightness scale. The result is used by the second part 1o maintain
hi%h sensitivity to temporal discontinuities and to compute relative motion
information. Conceptually, the constraints and the rules of transformation are
emberdded into a computing structure which ransforms the original image into
(WO new representations. carries the information about discontinuities in
space while the other represents intensity changes in the time domain. This
is consistent with the notion of space-time equivalence which suggests a
hierarchical design where spatial normalization is performed before dealing
with temporal domain.

Simulation results show that response of the module is proportional
to contrast of the stimulus and remains constant over the whole domain of in-
tensity. It is aiso pmromonal 10 velocity of motion Limited to any small por-
tion of the visual field. Uniform mouon throughout the visuat field results in
constant response, independent of velocity. Spatial and emporal intensity
changes are enhanced because computationally, the module resembles the
behavior of a DOG function.

la. Spatio-temporal considerations

Natral illumination can vary by ten logarithmic units of intensity.
This exceeds the response range of aruficial or biological sensors (3, 40).
Hence, the first problem is how (0 maintain constant sensitivity to light
changes over the whole intensity domain while preserving a “unigue’ map-
ping” between the reflectance properties of the surfaces and perceptual no-
uon of lightness. Linear vanauons of intensity usually are a consequence of
nonuniform illumination (38) that can be filtered out without loosing mean.
ingful information. The new representation of the image is expressed as re-
lauve values of intensities, that corresponds 1o spatial discontinuities generat-
ed by object boundanes. Absence of a DC component introduces a need for
some reference point necessary (o achieve lightness constancy.

OUTPLT

Lightness constancy can be viewed as a of maintaining
high sensitivity fecardless of local or global ambient light level (39). This
implies constant response when the illumination throughout the scene is mul-
tiplied by a constant. In addition, essential information such as edges must be
gmemd. One sclution is to have sensors with a sm intensity-response (I-

) characteristic, spanning 3 log units of intensity a mechanism that au-
tomatically shifts the operating curve o the prevailing ambient light level
(40).

Nearby areas of a scene tend 10 have approximately equal illumina-
ton and reflectance. Hence, we use local intensity averages (o set the upper
and lower thresholds of the response curves. This is done aummat;callx by
adjusting the midpoints of the I-R characteristics to the local ambient light
levels (40). Thereby invariance under local addition of linear illumination
bias is achieved. Similar argument holds for global averages which in addi-
tion reduce sensitivity 10 noise by remaving bias due 0 overail average il-
lumination. .

The detailed descripuonl'mf&ftmd nomalmb ization is given in (llr.7). Tt:‘:
fore briefly, this operation is y operators with two
gonistic z¥mu center spot and surrounding annulus, better known as
center/surround receptive fields (C/S-RF) (3, 41). The (/S uses lateral inhi-
bition 10 emphasize contrast or relative value as novelty (42). This normal-
1zes center signal agains the spatial context iniormation derived from the
surround. Such function is equivalent to a comparison of spatially distinct
areas of the image. The principle of antagonistc receptive ticlds is applied
to al] operators working on (he image.

A conceptually similar problem arises in the temporal domain. Most
of the objects in the real world are rigid and move with constant velocity
143). Information about them is contained in temporal discontinuities, which
must be detectable regardless of ambient motion levels. Again, the limited
response range of cach operdlor necessitates continuous adjustment of
operating charactenistics 0 ambient local velocity. Hence, the system must
normalize the temporal scale by resetting thresholds computed from relative,
rather than absolute, values. Temporal information can be derived by com-
paring activities of two C/S operators of opposite polarity (3, 17). The time
difference in the response waveshape of the two operators will produce a
transient that carries the information about the onset/offset of change. This
transient resembles a time derivative of intensity and is used to normalize the
temporal scale.

1t is clear from these spatial-temporal considerations that our visual
system must first normalize intensity changes in and time. And the way
10 subtract the DC component is 10 use antagonistic recepive fields imple-
mented by lateral inhibition . The net result is a double representation of the
image; onc carrying spatial, and the other temporal, information. Both of
them resemble the effect of convolving the criginal visual information with a
center-surround filter resembling difference of Gaussians (DOG) (2, 3).

1b, Structural details

Our computing architecture for normalization of the lightness scale
was inspired by natural vision systems (41). Major structural components in-
clude laieral interactions between neighboring clements within a layer, and
converging and diverging pathways between the layers (fig. 4). Overlap
between operators helps to enrich representation of the ccatrast information
across the boundaries between different receptors. For the sake of simplicity
local structures remain constant across the module.

INPUT(S)
1
CONTEXT |
TR
AT TN
|| e e
N jau i | [T

Figurc 4. Flow of information in the generalized, normalization module (a).
Center-surround  antagonism of an output operator.  Scven large context
operators determine the surround response and seven smaller input operators
determine the center response (b). The output operator comparcs the two
responscs.
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of the input intensities. o o & o e e e dierent levels of

resolution is of particular interest because it was im nwmedusin&:s'mpb.
universal architecture based upoa lateral inhibition. To simplify the simula-
tion, we assume that the photoreceptors converging ont & given
output layer operator are linearly combined and that inhibition is a simple
linear operation, ’

Fiﬁ. 5. shows combined architecture of both modules. Modularity
and parallelism simplifies signal processing without any ad-hoc assumpions
about image statistics. The wmporal e also consists of three, function-
ally distinct, two-dimensional layers of C/S operators,

hexagonal lattice. The centers of the RF's overlap, end their sizes are
different in distinct layers. To facilitate simulation, we chose to model only 2
smal! part of the visual field; hence we may assume that the sizes of the RF's
remain constant throughout cach layer,
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Figwre S. Hierarchical architecture of integrated spatial and temporal
modules.

The input to the temporal 2 )
erated by the spatial module. They are of opposite polarity, display
differences in dheir iemporal behavior, and are regularly interspaced. H.alf,of
the temporal input operators receive lnndmemsﬂ-.Aspnmld:mmAz
aweaﬁnzatﬁmtwiﬂgemwnmanmalrupon.sezohpnlmdl-a
with t] and ©2 not equal. This difference carries the information abowt the on-
set of temporal changes.

The time derivative is computed by an input operator which com-

pansmemfomunmaboutmepmmnnputsimal with values in the recent

past. The source of the information about past values is feedback from the
context operators. The feedback from global and local temporal context

does not interfere with a signal no:maliudgn:g‘ace.bylheﬁ.rst
submodule. This is similar to the action of local synaptic effect i1 amacrine
cells. Context operators act o predict the future transient respodise 1o mo-
Gon. The normalization of the temporal scale is achieved by shifting the
velocity-response curve of the output operatos over the domain of wrget
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module are two signals (I+ and 1-) gen-

formation which sppears ss a transient. However, with mpid motion, when
mmqmmmduummwy. positive and large
negative derivatives could cancel during the com of the
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Figure 6. Response of the spatial module to increasing contrast at various -
tevels of ambient light intensity.

The behavior of our module in response t0 & moving discontinuity
of intensity is shown in Fig. 7. where the vertical axis represents the maximal
response of an output operakor in the center of the visusl field. The horizon-
1l axis represents velocity in i tor units per iteration. One intero-

unit is the distance between two neighboring input operators. One
Teration is the amount of time it takes for a signal to go from an input opera-
tor to the context Layer and back to the same input ofx via the immediate
feedback. [n all cases the input signal is a sharp inuity of intensity.
The part of the discontinuity n the center of tho visual ficid is moving at one
velogglndﬂnm&toﬁlismovm' at a possibly different velocity. These
are called local velocity (vi) and g velocity (vg) tively. Fig. 7.
shows that if velocity is constant throughout the visual field, the response is
small and almost i ndent of vi. However, if motion is restricted to a
small part of the vi field (i.e. vg = 0) , a roughly linesr ~esponse is ob-
ined. This illustrates the fact that our module detects relative rather than
absolute motion.

2. A neural oet to extract motion heuristics.

The intemal representation of the world that is used by a visually
ided robot must be updated and maintained using the sensory data derived
the eavironment. Establishing 2 between the viewer-
centered sensor data and an object-Centered intemal representation is an ex-
pensive computational task (49). Therefore, a roving robot must either sit foe
a while and contemplate it's new position, or move under assumptions which
are a few sieps behind the real world (50). Typically, the correspondence
process forms an initial match berween a perceived oject and its internal
mode! and then, as the object moves with respect 10 the roving robot, the
orientation of th: model may need o be updated to reflect current sensor in-
formation {51). This paper demonstrates how a connectionist architecare
can speedup the matching of an intemal 3-D model to changing edge
features, by precomputing future positions of the edge featwres and providing
the maicher with neuristic information describing in which direction to start
manipulating the model.
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Figure 7. Motion throughout the visual field produces a s_mall response
(Vg=V1) Motion in a small region induccs a large roughly lincar response
(Vglob=0). )

The recognition of an object must involve the maiching of some in-
put data o an internal repeeseniation of an object. The matching can be ac-
complished by either: 1) manipulating the data and comparing it to a set of
fixed models or, 2) transforming the model 10 maich the captured edge
features. As an object in a scene moves, the 2-D projection of its boundaries
and key features appear t0 undergo translation, rotaton, and occlusion. This
suggests that the second method is more natwral because we do not need 10
compute the position of occiuded edfu. Also, the second method is more
suitable for a goal-driven system (52). The constantly updated model be-
comes a representaion of the world that can support scene interpretation,
planning, and other higher-level cognitive functions. Manipulating the
model requires the matcher to rotate and translate its internal model in an at-
tempt 10 match the current edge features. In this approach the internal model
is continuously trying to catch up to the real world. A speed-up would occur
f the matcher received, along with the incoming data, a preliminary guess of
which way the features were rotating or translaung.

3-D Models

Pre-computation

Layer

Columns of

Oriented Edge (—F—F—f—r—1—

Detectors it Bl Il Dl B B
NINENENTNEN

Overlapping A XX,

Spot Detectors /e e o 4:

Image /@ o<

Figure 8. Overall connectionist architecture of a network used (o extract mo-
tion heuristics.
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Most existing maichers are based on graph theoretic algorithms
which execute in exponential time with respect to complexity of the gra

description (53). The makher establishes a correspondence between
internal mode! tation and the edge features of an image. In this pa-
per, we assume that this part of the maicher is given. We are concentrating

on the lem of how matcher can maintain the established correspon-
dence m object is undergoing smooth or discontinuous motion.

To maintain the correspondence, the maicher could precompute
numerous, new arientations of the internal modet and have them ready for in-
coming data. But this precomputation technique would be time consuming
and unwieldy, since it substantiall kncrumthegnmm. Incoming data,
though, can be used 10 give speci ¢ suggestions on the matcher should
manipulate a model. A technique for precomputing possible future positions
otmeed}efwmesismeﬁmmpinrmnuhungamodelmampumion
heuristic for the matcher.

_ By using a connectionist architecture (9), we hope to understand
how vmni functions can be derived from massively parallel computing
structures. Additionally, neurophysiological evidence can be used to inspire
possible interconnectivity solutions (17, 54,55). Our mechanism for -
putation is partially motivated by the structure of the carly visual cortex
which has been extensively reviewed elsewhere (56). This region of the cor-
tex is composed of vertical slabs which contain neurons sensitive (0 contrast
edges. of a preset arientation, that are in particular region of the visual ficld
(56, 5T). Within each slab, there is also a convergence of information related
to color and motion. )

We have limited our implementation of vertical stabs to the simula-
tion of their edge orientation information. In a fashion similar to the visual
cortex, edge detectors of differing orientations over the same spatial sub-
region are grouped together and locally interconnected. Such a group of
onented edge detectors are called a column, A column contains all of. the
available orientation information for its particular sub-region of the image.
In the future, we hope to more realistically model the robustness of the verti-
cal stabs in the visual cortex.

Propagation
Nodes
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QOriented Edge

Detector
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+
Computation
Node s +
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3-D Matcher

Figu;c 9. Propagation nodes are intcrconnected 10 propagate the direction-
specific activities of edge detectors (2). A computation node requires simul-
taneous activities in both, its propagation node and its cdge detector, before it
will signal the response.




Fig. 8 outlines the computational hierarchy of the architecture. The
|| ﬁunameuupwlym“s:nuccdimoedle;;:tnsi byahl:cyaof
;&cmﬂmnmn tors whi

oecasont. Theso s processe: spot which are

in

the spot detectors ov each by thirty percent. The output from the
spot detectors are grouped to form oriented delecmwhici?umthcnop
ized into columns, It should be noted that this implementation deliberate-
y differs from the known neurophysiological data because of the limitations
of our simulation tools. Surrounding eech edge detector are propagation
nodes which compute where the edge may move in the future by exciting the
mguon nodes in adjacent columns, Oriented edge information is used
y the precomputation layer and the maicher. The precomputation layer
ves the matcher heuristic information on the direction of a moving edge
eature. Computation nodes which are in this layer are able 10 guess at the
direction of an edge by comparing the excitation levels of onented cdge

operators and the surrounding propagation nodes.

The lowest layer of the architecture extracts changes in image inten-
sity by using center-surround receptive fields has been detailed in (18).
Briefly, the image is first filtered by a layer of nodes with center/surround an-
tagonistic receptive fields. To reduce the simulation complexity, this layer
was modeled using a convolution operator.

The analyses of the information available from motion makes it ap-
parent that there are only few possible directions that edge feature could take
without violating the heuristics used for matching points in separate images
(58). Considering only rigid physical objects with limited velocity, the mo-
tion is limited to a few possible next-frame positions and directions. Hence
in principle it is possible (o simultancously tell the maicher where the edges
are and how they are moving.

To accomplish this objective, we organize the oriented edge detec-
tors within a sub-region of the image into a column and then bring the
columns together to form a cube. A transverse slice of the cube contains all
of the edge detectors of a particular orientation over the entire image. When
an edge becomes active, indicating that the current image has an edge feature
at that location and orientation, we want to use that fact to prepare for future
movement of that edge feature.

A moving edge feature can at most activate one of six, nearest-
neighbor edge detectors in our hypercolumn. To monitor this change, cach
oriented edge detector in a column is connected 10 six propagation nodes (p-
nodes), four translational and two rotational. Thus, a specific p-node wiil
transmit the activity of its edge detector in one of the six possible directions.
By propagating the excitation of an cd?e detector, the p-nodes prime the net-
work {or specific, future orientations of an edge feature (fg. 9).

A computation node (c-node) combines the information from an
oriented edge detector and its associated p-nodes. A c-node will only fire
when its edge detector and one p-node are high. Of course prior to amival of
the edge feature, high activity. of one p-node implies potential direction of
motion that can be signaled to the matcher,

2a. Example

Fig. 10 illustrates the changing excitation levels of the p-nodes and
c-nodes over time. In this example, a bar is moving from left to right across
the visual field (Fig. 10a) Fig. 10b demonstrates how the excitation levels of
cdge detectors are being propagated, in a rightward direction, by the +y
translational p-nodes. When both the p-nodes and the edge detectors are ex-
cited, the c-nodes will momentarily fire (fig. 10c) and provide heuristic infcr-
mation to the matcher.

The precomputation layer of our connectionist architecture can pro-
vide heuristic information useful in matching 3-D models to time-varying
edge features. If the velocity of an edge feature should exceed the propaga-
tion rate of the p-nodes, then the c-nodes will not be excited and the matcher
will not receive any heurnistic information. The matcher could interpret such
an edge as being part of either, a new object in the scene or, an object that is
undergoing discontinuous jumps.

CONCLUSION

/::/ i

New approaches 10 machine sensing and perception were presented.
The motivation for crossdisciplinary studies of perception in terms of Al and
Neurosciences is suggested. The question of computing architecture granu-
larity as related to globai/local computation underlying perceptual function is
considered and examples of two environments are given. Finally, the exam-
ples of using one of the environments, UCLA PUNNS, to study neural archi-
tectures for visual function are presented,

!
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Figure 10. The stimulus is a lime-varying image of the vertical bar is moving
from left to right (a). The P-nodes propagate the exponentially decaying sig-
nal about vefucally oriented edge moving in the +Y direction (b). When the
bar moves 1o the right, the C-nodé becomes active and sends the information

t0 the matcher that this edge feature has undergone left to right translation
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